ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Earl J. Schulz, John C. Lee
Nuclear Science and Engineering | Volume 73 | Number 2 | February 1980 | Pages 140-152
Technical Paper | doi.org/10.13182/NSE80-A18694
Articles are hosted by Taylor and Francis Online.
Time-optimal control of axial xenon oscillations in pressurized water reactors is investigated in the present study, properly accounting for operating constraints on the allowable axial offset (AO) band. The system equation describing the spatial xenon oscillations has been reformulated using a lambda mode expansion in a form that readily allows a physical interpretation of the state vector and the system equation. In particular, AO measurements can be used to define the entire system parameters completely. Previous optimal control studies have been limited to the case of controls to the origin in the xenon-iodine phase plane. Our present investigation indicates that time-optimal controls should, in general, involve bang-bang controls to a line segment in this phase plane, subject to a band constraint on allowable AO or available control strength. A suboptimal control strategy, which can be applied directly in actual operating conditions without the aid of on-line computers, is also proposed. Verification of the proposed time-optimal control strategies is performed through computer simulations of xenon-induced transients.