ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
R. N. Blomquist, E. E. Lewis
Nuclear Science and Engineering | Volume 73 | Number 2 | February 1980 | Pages 125-139
Technical Paper | doi.org/10.13182/NSE80-A18693
Articles are hosted by Taylor and Francis Online.
The variational formulation of the even-parity form of the within-group neutron transport equation is generalized to include complex trial functions. The introduction of transverse leakage effects through the buckling term exp(iB·r) leads, in general, to a coupled set of Euler equations for the real and imaginary even-parity flux components. The coupling between real and imaginary flux components is retained in both discrete-ordinates and finite element angular approximations. Employment of the spherical harmonics approximations in angle, however, leads to an uncoupled set of Euler equations if an appropriate choice of axes is made. Hence, a rigorous buckling treatment of third-dimensional leakage can be incorporated into two-dimensional transport computations without solving for the imaginary flux component. The foregoing spherical harmonic formulation is combined with finite element discretization in space in the multigroup criticality code FESH. One- and multigroup results are presented to demonstrate the elimination of ray effects and to examine the errors introduced by the DB2 leakage correction used in conventional transport calculations.