ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
F. B. Simpson, J. W. Codding, Jr.
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 133-138
Technical Paper | doi.org/10.13182/NSE67-A18676
Articles are hosted by Taylor and Francis Online.
Transmission measurements on 233Pa have been taken with the Materials Testing Reactor (MTR) fast chopper. The total cross section has been calculated in the energy range from 0.01 to 10 000 eV. These measurements were made on 700 mg of chemically separated 233Pa in an oxide form. The protactinium was produced by irradiating 280 g of 232Th in the Engineering Test Reactor (ETR). The sample represented approximately 15 000 Ci of activity. The data were taken with a resolution of 0.08 to 2.0 μsec/m. The Breit-Wigner (B-W) resonance parameters have been obtained for the resonances below 18 eV. The average parameters give a value of 0.75 × 10 −4 for the s-wave neutron strength function . Weighting the level spacings inversely as 2J + 1 gives the average observed level spacings per spin state of 1.10 and 1.84 eV. A second-order polynomial least-squares fit to the data between 0.01 and 0.10 eV gives a 2200 m/sec total neutron cross section of 55 ± 3 b, superseding a value of 57 b given previously. The resonance-absorption integral for neutrons with energies above 0.4 eV was calculated to be 901 ± 45 b.