ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. R. Mendelson
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 127-132
Technical Paper | doi.org/10.13182/NSE67-A18675
Articles are hosted by Taylor and Francis Online.
The sensitivity of three thermal-energy model problems to anisotropic scattering was investigated by comparing double P5 solutions with P3 and P1 scattering expansions. Results indicate that P3 scattering effects can be significant in the calculation of absorption rates in certain sensitive plane-geometry configurations. Monte Carlo calculations were also performed for one of these problems, using two different anisotropic scattering representations: the transport approximation; and a “histogram” kernel, which match the first two and four Legendre moments of the scattering kernel, respectively. The transport approximation was found to give discrepancies of eight to nine percent in thermal absorption rates, and it is concluded that this scattering representation can lead to serious errors in Monte Carlo calculations.