ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
A. Ziya Akcasu, Louis M. Shotkin
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 72-81
Technical Paper | doi.org/10.13182/NSE67-A18669
Articles are hosted by Taylor and Francis Online.
The bounded periodic behavior of the reactor power is studied for those instances when the equilibrium power is greater than the critical power level. Simple formulas are derived, for reactors with arbitrary linear feedback and no delayed neutrons, for the amplitude and frequency of the limit cycles. These quantities are shown to be related to the ratio of the equilibrium-to-critical power level and to the Laplace transform of the feedback kernel. Since the techniques used apply for arbitrary values of the fundamental component of the power oscillation, they are used to derive a describing function which is valid for large amplitude disturbances. Conditions for the existence of critical power levels and, hence, limit cycles are discussed. Formulae for investigating the stability of these limit cycles are also derived. Applications are made to the circulating fuel reactor and to the two-temperature reactor. It is also suggested that the results can be used in two practical situations: 1) When the oscillation amplitude is indistinguishable from the reactor noise, the power level can exceed critical; and 2) When the oscillation amplitude is large, the reactor can be used as a self-sustained pulse-modulated neutron source.