ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
A. Ziya Akcasu, Louis M. Shotkin
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 72-81
Technical Paper | doi.org/10.13182/NSE67-A18669
Articles are hosted by Taylor and Francis Online.
The bounded periodic behavior of the reactor power is studied for those instances when the equilibrium power is greater than the critical power level. Simple formulas are derived, for reactors with arbitrary linear feedback and no delayed neutrons, for the amplitude and frequency of the limit cycles. These quantities are shown to be related to the ratio of the equilibrium-to-critical power level and to the Laplace transform of the feedback kernel. Since the techniques used apply for arbitrary values of the fundamental component of the power oscillation, they are used to derive a describing function which is valid for large amplitude disturbances. Conditions for the existence of critical power levels and, hence, limit cycles are discussed. Formulae for investigating the stability of these limit cycles are also derived. Applications are made to the circulating fuel reactor and to the two-temperature reactor. It is also suggested that the results can be used in two practical situations: 1) When the oscillation amplitude is indistinguishable from the reactor noise, the power level can exceed critical; and 2) When the oscillation amplitude is large, the reactor can be used as a self-sustained pulse-modulated neutron source.