ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
J. B. Czirr, R. L. Bramblett
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 62-71
Technical Paper | doi.org/10.13182/NSE67-A18668
Articles are hosted by Taylor and Francis Online.
This experiment was conducted to obtain data to be used in calculating the number of fissions produced by neutrons in bulk 239Pu as a function of neutron energy. The data provide a consistent set of group-averaged cross sections and self-shielding factors. Although self-shielding factors have been calculated from cross-section data, no previous experiments to measure the energy dependence of 239 Pu self shielding exist. A consistent set of cross sections is possible because of the wide neutron energy range over which this experiment was done. No attempt was made to determine resonance parameters, since in this experiment poor energy resolution was used to improve statistics. (Resonance parameters are, in fact, unnecessary to determine group-averaged cross sections and room-temperature self-shielding factors.) Good-geometry self-shielding factors were measured by a plutonium fission counter shielded by various thicknesses of plutonium. Average fission cross sections, total cross sections, and self-shielding factors have been determined in 11 energy groups whose end points are in the ratio of 2.15-to-1. The energy range was 2.15 eV to 10 keV. The LRL Linac neutron time-of-flight facility was used, with a neutron resolution of 0.18 μsec/m. The detector consisted of a spark chamber that was sensitive to fission fragments, facing a 0.4 mg/cm2 plutonium-239 foil. Seven Pu absorber foils ranging from 0.06 to 3 g/cm2 were used in the self-shielding measurements. This range of absorber thickness yields an adequate description of the resonance-produced surface-absorption effect throughout the above energy region.