ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
K. Chen, C. A. Erdman, M. F. Kennedy, A. B. Reynolds
Nuclear Science and Engineering | Volume 83 | Number 4 | April 1983 | Pages 459-472
Technical Paper | doi.org/10.13182/NSE83-A18649
Articles are hosted by Taylor and Francis Online.
A homogeneous nucleation-condensation growth model was developed for calculating particle-size distributions measured in capacitor discharge vaporization (CDV) experiments conducted at the Oak Ridge National Laboratory. Uranium dioxide pellets were partially vaporized in an argon environment by rapid energy deposition through capacitor discharge. This was followed by rapid expansion and subsequent condensation of the UO2 vapor. Measured primary particle-size distributions of the resulting aerosols were lognormal, with a geometric mean particle diameter of (0.014 ± 0.002) µm and a geometric standard deviation of 1.7 ± 0.1. It was postulated that the expanding UO2 vapor compressed the surrounding argon as in a spherical shock tube and that the aerosol was generated by homogeneous nucleation and condensation growth in the resulting rarefaction wave. The calculated motion of the U02-argon interface is in approximate agreement with the movies of the expansion process. The calculated particle-size distributions are in agreement with the measured distributions except at the large particle end. This agreement indicates that the small primary particles from the CDV tests resulted from homogeneous nucleation and condensation growth, as assumed in the analytical model.