ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
C. Y. Fu
Nuclear Science and Engineering | Volume 86 | Number 4 | April 1984 | Pages 344-354
Technical Paper | doi.org/10.13182/NSE84-A18635
Articles are hosted by Taylor and Francis Online.
An advanced pairing correction for an existing formula of particle-hole state densities, needed in calculations of cross sections with the precompound nuclear reaction theory, is examined. The Pauli correction is derived to be consistent with this pairing correction. The accuracy of the pairing correction plus the Pauli correction is shown to be sufficient for applied calculations. Numerical solutions of the pairing equations, needed for generating the corrections, have been carried out. The relevant numerical results are presented as simple functions of the excitation energy and the exciton number. A relationship between the pairing correction for particle-hole state densities and the pairing correction for the total state densities in the closed-form formulation is developed. Utilization of the existing level-density parameters and data for deducing parameters for the particle-hole state densities are shown.