ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
T. M. John, Om Pal Singh
Nuclear Science and Engineering | Volume 89 | Number 4 | April 1985 | Pages 322-329
Technical Paper | doi.org/10.13182/NSE85-A18624
Articles are hosted by Taylor and Francis Online.
Some qualitative results of neutron noise in a boiling water reactor (BWR) are reported. By using one-group theory, it has been shown that the neutron flux fluctuations caused by a distributed source in space, representative of the coolant boiling noise in BWRs, can be considered as made up of two components: The first one, having a global character, is a quickly varying function of frequency and follows the fundamental mode solution in space; the second, called nonglobal (local), follows the spatial variation of noise-source intensity distribution and is independent of frequency for ω < υΣ, where υ is the speed of neutrons and Σ is the effective removal (production minus absorption) cross section. For ω < υΣ, this component decreases with increasing frequency. The formulation indicates that the global component is quite sensitive to the neutron multiplication factor of the system and, for the local component, the medium behaves like a nonmultiplying one. The global effect is dominant at lower frequencies in a critical system, and the local effect is dominant at higher frequencies.