ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
K. Yamaguchi, H. Nakamura, K. Haga
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 464-474
Technical Paper | doi.org/10.13182/NSE84-A18599
Articles are hosted by Taylor and Francis Online.
The effect of a local cooling disturbance caused by an edge-type blockage in a liquid-metal fast breeder reactor (LMFBR) fuel subassembly was investigated with a series of out-of-pile local blockage experiments with water and sodium. The heat exchange layer model first developed for central-type blockage cases applied well to the present edge-type cases. An empirical formula was developed for estimating maximum temperatures in various subassemblies, and the conclusion was reached that a middle size edge-type blockage could lead to sodium boiling. The critical heat flux data of Power Reactor and Nuclear Fuel Development Corporation and Kernforschungszentrum Karlsruhe were correlated with the boiling inception heat flux for various core flow velocities. A linear relation was found between them, suggesting a possible interpretation of the coolability limit within the framework of nonboiling conditions. The theoretical (hypothetical) excess temperature in the absence of boiling, ΔTms (= Tmax − Tsat), seemed to cross a critical value at the instance of permanent dryout. Based on the constant critical ΔTms assumption and the formula for Tmax, an assessment was made of the thermohydraulic consequences for the different blockage size situations of a typical LMFBR.