ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. A. Brown, C. Blahnik, A. P. Muzumdar
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 425-435
Technical Paper | doi.org/10.13182/NSE84-A18596
Articles are hosted by Taylor and Francis Online.
Loss-of-coolant accident (LOCA) analysis for a Canada Deuterium Uranium (CANDU) reactor considers a wide range of postulated break sizes and locations in the heat transport piping. Coincident failure of the emergency coolant injection system to operate on demand must also be considered. The unique features of the CANDU core and heat transport system, and how these features affect the response of the system to a LOCA, are described. The possible range of behavior of the fuel and fuel channels following a LOCA is discussed in terms of the maximum fuel temperatures that could occur and also in terms of the potential for breaching the core pressure boundary (in the case of CANDU, this boundary comprises a large number of horizontal pressure tubes, each containing horizontal fuel bundles). It is concluded that fuel temperatures remain well below the UO2 melting temperatures and that the integrity of the pressure tubes is maintained for all postulated LOCAs.