ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
D. A. Powers
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 357-366
Technical Paper | doi.org/10.13182/NSE84-A18589
Articles are hosted by Taylor and Francis Online.
Molten stainless steel at ∼1720°C and melts of iron and alumina or 54 wt% UO2, 16 wt% ZrO2, and 30 wt% stainless steel at 2400 to 2800°C were poured onto 0.95- to 7.62-cm-thick steel structures. The melts rapidly penetrated these structures, probably by a thermal ablation process. Coatings of 0.2- to 2-mm-thick urania on the surfaces of the steel delayed penetration by the very high-temperature melts. Data from tests involving melts impinging on steel structures could be correlated by the single-parameter, empirical expression A finite difference model of the experiments is described. The model is used as the basis for predicting the extent of crust formation when melts contact cold steel and to suggest that a gas gap may form between the steel and any crust of frozen material that does form.