ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Nobuaki Ohnishi, Kiyomi Ishijima, Sadamitsu Tanzawa
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE84-A18587
Articles are hosted by Taylor and Francis Online.
The empirical correlations for subcooled film-boiling heat transfer during a reactivity-initiated accident in light water reactors are derived from inverse heat conduction calculations using the cladding surface temperatures measured in in-reactor experiments. The experimental data for cold startup conditions (subcoolings of ∼10 to 80 K and coolant velocities of ∼0 to 2 m/s at atmospheric pressure) and hot standby conditions (subcooling of ∼10 to 40 K, system pressures of 7.2 and 16 MPa, and system temperatures of 550 and 580 K) are used for this investigation. The present correlations are compared with existing correlations from ex-reactor experiments. The results of transient fuel behavior calculations with a computer code that included the present correlations are in good agreement with the corresponding measured data from the experiments.