ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. Reimann, M. Khan
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 297-310
Technical Paper | doi.org/10.13182/NSE84-A18584
Articles are hosted by Taylor and Francis Online.
A small break in a horizontal coolant pipe is investigated. This flow geometry and accident scenario are of interest in nuclear reactor safety research. For the calculation of break mass flow rate, appropriate experiments are needed, especially for the case where stratified two-phase flow exists in the main pipe. The flow geometry corresponds to a “T”-junction with a large-diameter ratio of the horizontal pipe, D, to the branch pipe, d. In the present experiments, D was 206 mm, the downward-oriented branch diameters were 6, 12, and 30 mm. Air/water experiments were performed at a system pressure of 0.5 MPa and various differential pressures. The flow field could be observed visually. Photographs reveal both vortex-induced and vortex-free gas pull-through the break and the corresponding correlations for the onset of gas pull-through. The mass flow rate and quality distribution as a function of a dimensionless interface level are presented.