ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Ramu K. Sundaram, John C. Chen, John C. Dallman
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 287-296
Technical Paper | doi.org/10.13182/NSE84-A18583
Articles are hosted by Taylor and Francis Online.
Liquid holdup on a 101.6-mm-diam, 0.5588-m-long vertical rod has been measured in air/water cross flow at various air and water flow rates. The measurement technique involved the use of band-type capacitance probes, which are capable of measuring the average liquid film thickness around the rod circumference. The probe is able to provide useful information in the presence of non-uniform films around the rod as well as in rivulet flows. The data are shown to be consistent with previously obtained data on liquid drainage flow rates for a variety of air and water incident flow rates. A simple model, based on laminar flow theory, reasonably explains the trends in film thickness variation.