ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Juan J. Manzano-Ruiz, David Gordon Wilson
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 275-286
Technical Paper | doi.org/10.13182/NSE84-A18582
Articles are hosted by Taylor and Francis Online.
A test rig was built to run steady-state experiments with air/water mixtures at low pressure (42 kPa), and to determine the performance characteristics of two-phase flow through a centrifugal pump. Application is to a loss-of-coolant accident situation in nuclear reactor power plants if a large break in one of the primary pump legs took place. Two feasible accident conditions were tested; first- (forward flow and rotation) and third-quadrant (reverse flow and rotation) conditions. A significant head-pump degradation process was observed in the first-quadrant operation for increasing amounts of gas supplied, whereas in the third quadrant no difference in performance was detected with respect to single-phase flow and up to an inlet volumetric quality of 20%. The data gathered have been correlated in terms of a defined head-loss ratio, flow coefficient, and volumetric quality, which facilitates its use in predicting pump performance in similar designs of different scale.