ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
William T. Sha
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 413-421
Technical Paper | doi.org/10.13182/NSE66-A18562
Articles are hosted by Taylor and Francis Online.
A one-dimensional noniterative method for calculating the fast- and thermal-neutron flux distribution, effective neutron multiplication factor, power density, enthalpy profile, water density distribution, and steam void map of a light-water moderated reactor core is presented and programmed as a computer code — ANDREA. In this method, the spatial dependence of the neutron spectrum is accounted for explicitly. The method outlined in this paper can be used as one of the design tools for pressurized water reactor (PWR) cores as well as for boiling water reactors (BWR). The novelty of this method lies in its noniterative mathematical formulation which takes into account the nuclear-thermal interaction in a reactor channel. Fission density is directly related to heat generation and heat generation causes density changes in the coolant with subsequent formation of steam voids. The method described here is based on the fact that the above relationships are interdependent. As a result of this noniterative formulation, a significant amount of computer time is saved. Finally, it is to be noted that the method presented in this paper is primarily intended for the analysis of large power reactors.