ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
William T. Sha
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 413-421
Technical Paper | doi.org/10.13182/NSE66-A18562
Articles are hosted by Taylor and Francis Online.
A one-dimensional noniterative method for calculating the fast- and thermal-neutron flux distribution, effective neutron multiplication factor, power density, enthalpy profile, water density distribution, and steam void map of a light-water moderated reactor core is presented and programmed as a computer code — ANDREA. In this method, the spatial dependence of the neutron spectrum is accounted for explicitly. The method outlined in this paper can be used as one of the design tools for pressurized water reactor (PWR) cores as well as for boiling water reactors (BWR). The novelty of this method lies in its noniterative mathematical formulation which takes into account the nuclear-thermal interaction in a reactor channel. Fission density is directly related to heat generation and heat generation causes density changes in the coolant with subsequent formation of steam voids. The method described here is based on the fact that the above relationships are interdependent. As a result of this noniterative formulation, a significant amount of computer time is saved. Finally, it is to be noted that the method presented in this paper is primarily intended for the analysis of large power reactors.