ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
William T. Sha
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 413-421
Technical Paper | doi.org/10.13182/NSE66-A18562
Articles are hosted by Taylor and Francis Online.
A one-dimensional noniterative method for calculating the fast- and thermal-neutron flux distribution, effective neutron multiplication factor, power density, enthalpy profile, water density distribution, and steam void map of a light-water moderated reactor core is presented and programmed as a computer code — ANDREA. In this method, the spatial dependence of the neutron spectrum is accounted for explicitly. The method outlined in this paper can be used as one of the design tools for pressurized water reactor (PWR) cores as well as for boiling water reactors (BWR). The novelty of this method lies in its noniterative mathematical formulation which takes into account the nuclear-thermal interaction in a reactor channel. Fission density is directly related to heat generation and heat generation causes density changes in the coolant with subsequent formation of steam voids. The method described here is based on the fact that the above relationships are interdependent. As a result of this noniterative formulation, a significant amount of computer time is saved. Finally, it is to be noted that the method presented in this paper is primarily intended for the analysis of large power reactors.