ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
David A. Sargis and Lawrence M. Grossman
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 395-406
Technical Paper | doi.org/10.13182/NSE66-A18560
Articles are hosted by Taylor and Francis Online.
The technique usually employed to estimate errors in approximation schemes for neutron physics problems is simply to compare the results with higher order approximations or purely numerical results, or with available experimental measurements. In this paper, an analytic error-estimating technique is developed for deriving error bounds for approximate eigenvalues, which depends only on the proximity of the exact and approximate eigenvalues and not on higher order approximations. An integral equation formulation is employed in developing the error estimating method, but the form of the integral equation kernel is not restricted, so that broad classes of integral equations may be treated. By means of the Green's function, differential-equation eigenvalue problems may also be handled. To illustrate the error estimating method, the space decay constant eigenvalue problem of neutron thermalization theory is discussed. Error bounds are developed for the space decay constant eigenvalues in both the Wilkins heavy-gas differential equation and Wigner-Wilkins integral-equation scattering models. The results obtained indicate that rigorous error estimates can be obtained with little computational effort.