ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
E. E. Lewis
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 359-364
Technical Paper | doi.org/10.13182/NSE66-A18554
Articles are hosted by Taylor and Francis Online.
The Dirac chord method is applied to the calculation of the escape probability of heavy charged particles from a uniform isotropic source of arbitrary convex geometry. This leads to the distribution of path lengths traveled by particles before escaping from the source. The path-length distribution, which is a function only of the Dirac chord distribution, may be used to average nuclear characteristics over the source geometry. As an illustration, the standard formula for the neutron-escape probability is reproduced. Expressions are then derived for the spectrum and energy self absorption of heavy-charged-particle sources. Specific results for spherical, slab, and cylindrical sources are obtained with the assumption that the range is proportional to an arbitrary power of the particle energy.