ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
O. E. Dwyer
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 343-358
Technical Paper | doi.org/10.13182/NSE66-A18553
Articles are hosted by Taylor and Francis Online.
Circumferential variations of temperature and local heat transfer coefficients were obtained for sodium flowing in-line through a staggered rod bundle. The conditions of the study were: turbulent flow, uniform heat flux from the surfaces of all rods, and fully developed velocity and temperature profiles. The rods were spaced in an equilateral triangular array, and the pitch:diameter (P:D) ratio was varied down to 1.10. It was shown that the annulus model is satisfactory for estimating average heat transfer coefficients for P:D ratios down to about 1.3, but below this, it gives increasingly high results, e.g., at P:D = 1.10, an annulus-model coefficient can be high by about a factor of 2. It was found that circumferential temperature variations are not large, e.g., at P:D = 1.10, this variation is about twice the average temperature drop from the rod surface to flowing metal. Compared to the P:D ratio, the Peclet number has little influence on the reduction in the average heat transfer coefficient, or the circumferential variation of the surface temperature. At a P:D ratio of 1.40, the local coefficient is estimated to vary by a factor of only 1.2; at 1.20, by a factor of 1.7; and at 1.10, by a factor of ≈ 100.