ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Willy Smith and Frederick G. Hammitt
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 328-342
Technical Paper | doi.org/10.13182/NSE66-A18552
Articles are hosted by Taylor and Francis Online.
Applications to nuclear reactors have revived interest in natural convection. A rectangular closed cavity with internal heat generation and wall-cooling roughly simulating a channel of an internally-cooled homogeneous reactor core has been studied theoretically and experimentally. The basic equations of continuity, Navier-Stokes, and a modified energy relation including a volumetric heat source are normalized to show the dependence on the following nondimensional parameters: i) Nusselt number based on width; ii) Prandtl number, and iii) product of Rayleigh number based on width and aspect ratio, a/b, of the cavity. The complexity of these equations allows only numerical solutions, which are obtained following a modified Squire's method consisting in assuming temperature and velocity profiles. These are substituted into the nondimensional equations, and integrated across the cavity, resulting in a still complex system of differential equations in which the dependent variables and unknown functions are the thickness, velocity, and temperature of the rising core of fluid. The coefficients in the equations are functions of the core thickness, more or less complicated according to the velocity and temperature profiles assumed. Two cases are considered: a simplified temperature profile, as used by Lighthill; and a more sophisticated profile with a positive maximum. Both velocity profiles are Lighthill's. Digital computer calculations using a fourth-order Runge-Kutta method yielded solutions that follow the typical one-fourth power law: Nu = C(m, σ)[(a/b)Ra]1/4, where 1/2m is the slope of the wall temperature distribution, assumed linear. To include liquid metals, C was computed for 0.01 ≤ σ ≤ 10. The parallel experimental study confirms the existence of a positive maximum in the temperature profile, previously not reported. Introduction of this innovation in the theoretical treatment leads to excellent agreement with experimental results, and has the general effect of lowering the theoretical curves Nu = f[σ,(a/b)Ra]. Semiquantitative experimental data on the velocity field also indicate the existence of a positive maximum in the velocity profile until now not reported.