ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Christopher F. Masters, K. B. Cady
Nuclear Science and Engineering | Volume 29 | Number 2 | August 1967 | Pages 272-282
Technical Paper | doi.org/10.13182/NSE67-3
Articles are hosted by Taylor and Francis Online.
A theoretical interpretation of the modified pulsed-neutron-source experiments of Sjöstrand, Gozani, and Garelis and Russell is given using exact steady-state Boltzmann equations. The interpretation is based on a phenomenological description of the experiments and is patterned after work done on the Garelis-Russell method by Corngold. The basic approximation made is that the fundamental prompt-mode decay constant is much larger than any delayed-neutron precursor decay constant. The theoretical interpretation allows the reactivities measured by the above three modified pulsed-source techniques to be easily calculated and compared to more conventional definitions of reactivity. The calculations can be performed by any standard source-iteration code that has been modified to solve the inhomogeneous problem. Experiments were performed on the Cornell University Critical Assembly and interpreted with the aid of the above theory. Calculations and experiments agree to within 20%. Sjöstrand's method is found to give the best result for this reactor.