ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 29 | Number 2 | August 1967 | Pages 254-263
Technical Paper | doi.org/10.13182/NSE67-A18535
Articles are hosted by Taylor and Francis Online.
Analytical expressions for the spatially independent spectrum and importance (adjoint) function in fast-reactor assemblies have been developed. These expressions were obtained by solving the neutron balance equation, and the equation adjoint thereto, by the method of successive approximation. Solutions obtained in this manner suggest an interpretation of the collision density in terms of the probability that a fission neutron suffers a given sequence of scattering collisions, summed over all such sequences. Similarly, the importance function is interpreted in terms of the fission-neutron production probability following a given sequence of scattering collisions, summed over all such sequences. The analytical expressions are readily evaluated using either differential or group-averaged cross-section values. Integral properties of highly enriched and dilute fast-reactor assemblies were evaluated and compared with experiment; the agreement was comparable with that obtained with multigroup calculations normally employed to evaluate such assemblies.