ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Richard E. Faw
Nuclear Science and Engineering | Volume 29 | Number 2 | August 1967 | Pages 210-217
Technical Paper | doi.org/10.13182/NSE67-A18529
Articles are hosted by Taylor and Francis Online.
Energy spectra have been computed for protons, alpha particles, and their secondary electrons slowing down in water irradiated by 14.6-MeV neutrons. Spectra for protons and alpha particles were based on continuous slowing down theory. Anisotropy of the proton-recoil reaction and elastic nuclear collisions of charged particles were found to have negligible influence on energy spectra and the energy-loss distribution. Partitioning of the neutron first-collision dose rate among the three particles was found to be very sensitive to the cutoff energy for production of secondary electrons. An analysis based on treatment of a collisional energy loss of less than 200 eV as localized energy dissipation along a particle track showed that localized electronic energy loss is distributed among protons, alpha particles, and their secondary electrons in the respective fractions 0.530, 0.112, and 0.358.