ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Richard E. Faw
Nuclear Science and Engineering | Volume 29 | Number 2 | August 1967 | Pages 210-217
Technical Paper | doi.org/10.13182/NSE67-A18529
Articles are hosted by Taylor and Francis Online.
Energy spectra have been computed for protons, alpha particles, and their secondary electrons slowing down in water irradiated by 14.6-MeV neutrons. Spectra for protons and alpha particles were based on continuous slowing down theory. Anisotropy of the proton-recoil reaction and elastic nuclear collisions of charged particles were found to have negligible influence on energy spectra and the energy-loss distribution. Partitioning of the neutron first-collision dose rate among the three particles was found to be very sensitive to the cutoff energy for production of secondary electrons. An analysis based on treatment of a collisional energy loss of less than 200 eV as localized energy dissipation along a particle track showed that localized electronic energy loss is distributed among protons, alpha particles, and their secondary electrons in the respective fractions 0.530, 0.112, and 0.358.