ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
M. Abdelghany, M. C. Roco
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 469-478
Technical Note | doi.org/10.13182/NSE84-A18513
Articles are hosted by Taylor and Francis Online.
This Note suggests an improvement to the computational approach for axial turbulent flow in rod bundle subchannels. The turbulence anisotropy and its effects on the mean flow are numerically determined. The predictions require both fewer assumptions and empirical coefficients than the commonly used numerical methods. The physical model of turbulence proposed by Roco and Zarea in 1978 is used to express the Reynolds stresses in the momentum equations, in terms of the main flow kinetic energy multiplied by specific turbulence indices. All parameters, including the anisotropy factor, are predicted with a time efficient computer code written in FORTRAN IV. Galerkin's weighted residual finite element method is applied and the resulting system of algebraic equations is solved using Gaussian elimination with iterative improvement. The numerical scheme is applied for air flow in subchannels of a 3 × 6 rectangular array of rods and other rod arrangements. The results are in good agreement with the experiments using heated sensors, as well as with available analytical and experimental results. The approach applied here for the two-dimensional stream-cross case can be extended to three dimensional flow analysis.