ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Toshikazu Shibata, Tadaharu Tamai, Masatoshi Hayashi, John C. Posey, James L. Snelgrove
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 405-417
Technical Paper | doi.org/10.13182/NSE84-A18507
Articles are hosted by Taylor and Francis Online.
Irradiated uranium-aluminide fuel plates of 40% 235U enrichment were heated for the determination of the amounts of fission products released at temperatures up to and higher than the melting point of the fuel cladding material. The release of fission products from the fuel plate at temperatures below 500°C was negligible. Three stages of fission product release were observed. The first rapid release was observed at ∼561°C along with blistering of the plates. The next release, which occurred at 585°C, might have been caused by melting of the Type 6061 aluminum alloy. The last release of fission product gases occurred at 650°C, which probably corresponds to the eutectic temperature of the uranium-aluminum alloy. The released material was mostly xenon, and small amounts of iodine and cesium were observed.