ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Vincent P. Manno, Michael W. Golay, Kang Y. Huh
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 349-360
Technical Paper | doi.org/10.13182/NSE84-A18504
Articles are hosted by Taylor and Francis Online.
Analytical models formulated to model accurately hydrogen transport in containments are presented. These models have been incorporated into the LIMIT computer code. The thermofluid dynamic model options span a wide range of applicability from rapid blowdown-type events to slow near-incompressible hydrogen injection. The utilization of distinct modeling treatments for the various accident stages is important, since the blowdown period is governed by thermofluid dynamic mechanisms (high Mach number, turbulent, multiphase forced convection), which are different from those of the postblowdown phase (low speed, multiphase, stratified natural convection). Detailed ancillary models of molecular and turbulent diffusion, mixture transport, and thermodynamic properties and heat sink modeling are addressed. The numerical solution of the governing equations is accomplished in discretizations of varying refinement, as are required for the successive stages of a containment accident, and emphasizes efficiency and accuracy. Two demonstration calculations are reported including the successful simulation of a large-scale experiment and the reproduction of an analytic result. Areas worthy of future development are also described. Overall, a versatile analysis methodology is introduced.