ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Bernard I. Spinrad, James S. Sterbentz
Nuclear Science and Engineering | Volume 90 | Number 4 | August 1985 | Pages 431-441
Technical Paper | doi.org/10.13182/NSE85-A18491
Articles are hosted by Taylor and Francis Online.
The Wigner-Seitz cell problem is treated by integral transport theory as a superposition of black boundary problems using the volume source and sources equivalent to the two lowest order angular components of the reentrant flux. This treatment sheds light on the convergence properties of iterative integral transport solution methods. The outgoing flux is required to have the lowest order components equal and opposite to those of the reentrant flux. Sample problems with this P11 boundary condition give good results. A new approximation to neutron transport theory is also reported. This approximation does not rely on expansion or approximation of the angular flux distribution, but rather on approximating the integral transport kernel by a sum of diffusionlike kernels that preserve spatial moments of the kernel. This might permit transport problems to be treated as a set of coupled diffusion problems in any geometry.