ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. J. Honrubia, J. M. Aragonés
Nuclear Science and Engineering | Volume 93 | Number 4 | August 1986 | Pages 386-402
Technical Paper | doi.org/10.13182/NSE86-A18474
Articles are hosted by Taylor and Francis Online.
A new method for solving the Boltzmann-Fokker-Planck equation is presented. Following the finite element technique, the solution is projected onto a space defined by linear discontinuous basis functions. Three approaches for the angular flux are derived and compared: the first two for a coupled energy-position discretization and the third one for the coupled energy-position-angle discretization. The last was specifically developed for highly anisotropic problems, such as ion beams impinging on an inertial confinement fusion target. Numerical results show clearly that the finite element approaches are higher order approximations. The convergence rate, stability, and performance compared with other methods are examined.