ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
J. M. Googin, W. L. Harper, L. R. Phillips, F. W. Postma
Nuclear Science and Engineering | Volume 17 | Number 4 | December 1963 | Pages 586-592
Technical Paper | doi.org/10.13182/NSE63-A18451
Articles are hosted by Taylor and Francis Online.
Some pertinent physical properties were determined for thirty-two diethers and related compounds whose structures indicated that they might be good uranium extractants. Correlation of these properties with structures indicates that the use of the carbon to oxygen atomic ratio as a guide to the extraction power of an ether cannot be extended beyond a particular homologous series nor used when the spacing of the oxygen atoms in the ether is changed. The dipole moment appears to be a factor in explaining the differences in the extraction power of compounds with the same carbon to oxygen ratio. The lower-membered dialkoxypentanes showed suitable physical properties and adequate uranium extraction capabilities. These were examined more thoroughly with respect to their use as uranium extractants in large scale recovery operations.