ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
L. M. Slater
Nuclear Science and Engineering | Volume 17 | Number 4 | December 1963 | Pages 576-585
Technical Paper | doi.org/10.13182/NSE63-A18450
Articles are hosted by Taylor and Francis Online.
Cesium (<5 × 10-3M) can be extracted from aqueous sodium iodide solutions into equal volumes of 0.2M I2 in nitrobenzene at 25°C with extraction coefficients as great as two thousand. Cesium may be back-extracted by equilibration with ∼4M or stronger nitric acid. The separation factor of cesium (∼10-7M) from sodium in extractions made from sodium iodide solutions into equal volumes of 0.2M I2 in nitrobenzene at 25°C remained fairly constant at ∼1500 up to ∼1M NaI. It decreased to ∼100 at 8M NaI. At this point the cesium extraction coefficient was still greater than two. The decrease in the separation factor is seen as largely due to the decrease in the ratio of the activity coefficient of the cesium ion to that of the sodium ion in the aqueous phase. Extraction data for sodium and cesium from various solutions and under a variety of conditions are given. Sodium and cesium ions are seen extracted as ion association compounds with triiodide ions. Polyiodide ions as complex as the enneaiodide are formed subsequently in the organic phase. Sodium and cesium polyiodides are thought to be essentially ionized in nitrobenzene. Extractions are believed to be the result of the “squeezing out” from aqueous solution into nitrobenzene of ion pairs of cations of small ionic potential together with large anions that are compatible with the organic solvent. The driving force behind the extractions comes largely from the reformation of the hydrogen bonded water structure in the relatively large cavities left by the extracted ion pairs.