ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
R. D. Jain
Nuclear Science and Engineering | Volume 17 | Number 4 | December 1963 | Pages 551-556
Technical Paper | doi.org/10.13182/NSE63-A18447
Articles are hosted by Taylor and Francis Online.
The asymptotic energy spectrum of thermal neutrons in an infinite medium of beryllium has been calculated for three temperatures: 300°K, 200°K, 100°K, for a constant plane source of neutrons at the midplane. The techniques of multigroup diffusion theory were applied, using Nelkin's first order scattering kernel for Be, and the energy-dependent transport mean free path, λtr(E), calculated by Bhandari. Because of the violent variation of λtr in the vicinity of the Bragg cutoff energy, for the lower moderator temperatures the calculated flux spectrum is quite different from the Maxwellian. At 300°K the deviation from the Maxwellian is small.