ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
R. D. Jain
Nuclear Science and Engineering | Volume 17 | Number 4 | December 1963 | Pages 551-556
Technical Paper | doi.org/10.13182/NSE63-A18447
Articles are hosted by Taylor and Francis Online.
The asymptotic energy spectrum of thermal neutrons in an infinite medium of beryllium has been calculated for three temperatures: 300°K, 200°K, 100°K, for a constant plane source of neutrons at the midplane. The techniques of multigroup diffusion theory were applied, using Nelkin's first order scattering kernel for Be, and the energy-dependent transport mean free path, λtr(E), calculated by Bhandari. Because of the violent variation of λtr in the vicinity of the Bragg cutoff energy, for the lower moderator temperatures the calculated flux spectrum is quite different from the Maxwellian. At 300°K the deviation from the Maxwellian is small.