ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
E. Barnard, N. A. Khan, R. C. F. Mclatchie, M. J. Poole, J. H. Tait
Nuclear Science and Engineering | Volume 17 | Number 4 | December 1963 | Pages 513-522
Technical Paper | doi.org/10.13182/NSE63-A18441
Articles are hosted by Taylor and Francis Online.
In the experiment to be described the 28 Mev electron linac at Harwell was used as a neutron source to produce 1 µsec bursts of 1011 electrons 160 times per second. A natural uranium target was placed centrally against one face of a 60 cm x 62.2 cm x 71.1 cm graphite block, and a neutron beam extracted from a channel running into the center of the block. This beam was interrupted by a slow chopper running in synchronism with the pulses from the accelerator. In this way 100 µsec “time samples” of the neutrons in the block were taken and their spectrum determined by the time-of-the-flight method. The instant of the “time sample” relative to the fast neutron pulse could be varied by an electronic delay circuit. Neutron spectra are presented for the time varying between 300 µsec and 1000 µsec after the pulse. These spectra differ from the Maxwellian shape but approach asymptotically to a “cooled Maxwellian” from which they are indistinguishable after 1000 µsec. Detailed calculations of the spectra have been made using an IBM 7090 computer to obtain a numerical solution of the time and energy dependent diffusion equation; using a scattering kernel based on the scattering measurements made at Chalk River. The experimental results are also compared with spectra using a scattering kernel based on the heavy gas model with a fictitious mass of 33.