ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kun Min and B. T. Chao
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 534-546
Technical Paper | doi.org/10.13182/NSE66-A18425
Articles are hosted by Taylor and Francis Online.
An experimental investigation has been carried out demonstrating the feasibility of improving wall-to-fluid heat transfer in solid-gas suspension flow in which the solid particles were electrically charged and were acted upon by forces due to a fluctuating electric field, normal to the flow stream. The suspension, consisting of 30-μ glass beads in air, flowed vertically downward in a rectangular heat-transfer channel. The flow Reynolds number ranged from 1460 to 5840 and the loading ratio from 0 to slightly above 2. An alternating potential of 10-kV peak-to-peak was applied across the half-channel width of 0.635 cm. At the frequency of 7.7 cycles/sec and the loading ratio of unity, the rate of heat transfer was observed to increase by approximately 30 to 60%, depending on the Reynolds number. It was shown that the increase in heat transfer can be largely accounted for by the heat conveyed by the particles from the heated wall to the flow stream. Under certain simplifying assumptions, the increase in heat flux was expressed in terms of the particle influx at the wall and the degree of accommodation of the particles to the wall and fluid bulk temperatures. The principal simplifying feature of the system was the dominant influence of the applied field on the particle transport behavior.