ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
M. W. Dyos and A. Keane
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 530-533
Technical Paper | doi.org/10.13182/NSE66-A18424
Articles are hosted by Taylor and Francis Online.
The convergence of the iterative procedure for solving the slowing down equation is examined. It is found that the rate of convergence of the iterative procedure depends on the ratio of the resonance scattering and absorption cross sections, being rapid if the resonance is predominantly absorbing. The method of Goldstein and Cohen for treating intermediate resonances is carried to the third approximation, and numerical results are obtained for the 192-eV resonance of 238U in a 1:1 mixture with hydrogen.