ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
S. J. Friesenhahn, E. Haddad, F. H. Fröhner, and W. M. Lopez
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 487-499
Technical Paper | doi.org/10.13182/NSE66-A18419
Articles are hosted by Taylor and Francis Online.
Neutron capture cross-section measurements from 0.01 to 10 eV on 182W, 183W, 184W, and 186W employing a totally absorbing gamma-ray detector are described. The 2200 m/sec values of the neutron capture cross section (in barns) obtained are: The shapes and magnitudes of the cross-section curves are compared to calculations using reported resonance parameters. Negative energy levels are postulated to account for the discrepancies between calculation and experiment for 182W and 184W. The 182W parameters are: E0 = −30.7 eV, Γγ= 57 meV, = 20 meV, g = 1, and for 194W: E0 = −110 eV, Γγ= 57 meV, = 48.4 meV, g = 1. The 183W and 186W measured cross sections are lower than those calculated from reported positive-energy resonance parameters. A measurement of the gold-capture cross section was used as a check on the experimental techniques employed. This work was supported in part by the National Aeronaustics and Space Administration, Space Nuclear Propulsion Office, under Contract SNPC-27.