ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
F. D. Judge and P. B. Daitch
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 472-486
Technical Paper | doi.org/10.13182/NSE66-A18418
Articles are hosted by Taylor and Francis Online.
The variational method is used to reduce the general time-dependent Boltzmann equation to a multigroup (with overlapping or nonoverlapping) form. The variation of the fundamental decay rate with material properties is then studied. The relation between energy and space transients in pulsed multiplying and pulsed moderating systems is investigated. To augment the theoretical treatment of the asymptotic decay in a pulsed multiplying system, the Nelkin buckling expansion solution for the Fourier transformed transport equation for 1/υ absorption is extended to include non-1/υ absorption and fission. The development of an improved calculational procedure (DP-L multigroup overlapping or nonoverlapping) for determining the space and time dependence of the neutron flux in pulsed multiplying systems is described. This method is then applied to the analysis of recent pulsed spectra measurements. The duration of the energy and spatial transients and the variation of the vector flux distribution from the center to the edge of an assembly are described quantitatively. It is demonstrated that spatial asymmetries in the flux could exist after the flux distribution appears asymptotic.