ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
J. W. Kutcher, M. E. Wyman
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 435-446
Technical Paper | doi.org/10.13182/NSE66-A18414
Articles are hosted by Taylor and Francis Online.
An absolute experimental measurement has been made of the time dependence of the beta energy spectrum from fission fragments, specifically beta particles of energies greater than 0.75 MeV produced in the thermal neutron fission of uranium-235. This measurement has been made for four cases: the initiation of a constant fission rate in a cold uranium foil; shutdown after 1- and 3-h runs at a steady fission rate; and an instantaneous burst of fissions produced by a reactor pulse. The fission source was a foil coated with approximately 38 mg of 235U and placed in a thermal neutron beam from a reactor. The fission rate was measured with an ionization chamber. The beta energy spectrum was measured with a plastic scintillator, with absolute counting being determined by the known solid angle between source and detector. Background counts have been reduced to less than 10% in all cases. The total uncertainty in the analyzed data was less than 5% for the steady power runs and less than 8% for the reactor pulsing runs. The experimental results are in substantial agreement with those predicted by theory.