ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Industry Update—November 2025
Here is a recap of recent industry happenings:
TerraPower’s Natrium plans for Wyoming, Utah move forward
TerraPower has reported a number of developments related to its Natrium sodium fast reactor project. In the project’s fifth round of procurement awards, the company awarded three supplier contracts to support the Natrium plant’s construction, which is underway in Kemmerer, Wyo., and is expected to be completed in 2030. AvanTech will design advanced sodium processing system modules and supporting skids for the Natrium plant, as well as fabricate and deliver the test and fill facility cold trap skid. Structural Integrity Associates will design and fabricate the sodium cover gas gamma spectroscopy analysis cabinet, a radiation monitoring system. PAR Systems will design and fabricate the pool handling machine, a specialized crane system for spent fuel pool operations.
J. W. Kutcher, M. E. Wyman
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 435-446
Technical Paper | doi.org/10.13182/NSE66-A18414
Articles are hosted by Taylor and Francis Online.
An absolute experimental measurement has been made of the time dependence of the beta energy spectrum from fission fragments, specifically beta particles of energies greater than 0.75 MeV produced in the thermal neutron fission of uranium-235. This measurement has been made for four cases: the initiation of a constant fission rate in a cold uranium foil; shutdown after 1- and 3-h runs at a steady fission rate; and an instantaneous burst of fissions produced by a reactor pulse. The fission source was a foil coated with approximately 38 mg of 235U and placed in a thermal neutron beam from a reactor. The fission rate was measured with an ionization chamber. The beta energy spectrum was measured with a plastic scintillator, with absolute counting being determined by the known solid angle between source and detector. Background counts have been reduced to less than 10% in all cases. The total uncertainty in the analyzed data was less than 5% for the steady power runs and less than 8% for the reactor pulsing runs. The experimental results are in substantial agreement with those predicted by theory.