ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Larry R. Foulke, Elias P. Gyftopoulos
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 419-435
Technical Paper | doi.org/10.13182/NSE67-A18402
Articles are hosted by Taylor and Francis Online.
A space-dependent reactor kinetics approximation, called the Natural Mode Approximation (NMA), has been applied to the calculation and interpretation of reactor dynamic experiments. The NMA is based on a modal expansion technique where the space- and time-dependent reactor variables are approximated by a series of products of time-dependent coefficients and space-dependent expansion modes. The modes are the eigenvectors of a linear operator derived from the complete set of equations describing the reactor system at an initial reference condition. A pair of computer codes, MUDMO-II and SYNSIG, are used to synthesize approximate modes in two-dimensional systems without feedback. An oscillation test is proposed which may be used to verify key parameters of the NMA. The experimental technique is described and applied to both numerical and actual measurements. In addition, it is shown how a natural mode expansion may be used to interpret standard dynamic experiments when the observations are functions of space and time. The results of calculations of kinetic problems are compared with those of independent calculations which are considered to be exact. Good agreement is established. It is shown that the flux tilting following a localized perturbation is a sensitive function of the relative magnitudes of the measurable parameters of the NMA. The novel idea of “correction modes” is introduced which increases the accuracy of a low-order NMA without appreciable increase in computation time.