ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
H. Rief, H. Kschwendt
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 395-418
Technical Paper | doi.org/10.13182/NSE67-A18401
Articles are hosted by Taylor and Francis Online.
A detailed Monte Carlo analysis in one, two, and three dimensions and with different multigroup scattering kernels is presented for a number of actual reactor systems. Several variance reducing sampling techniques, which we believe to be unusual, are employed and, in addition to the prediction of reactivity, much emphasis is placed on generation time calculations with reference to the “life cycle” point of view. One of the main points of interest in the numerical results obtained is the comparison of the reactivity and time eigenvalues with those obtained from the equivalent SN and jN calculations. The excellent agreement with these two methods establishes the necessary confidence in the Monte Carlo procedure described here. As a further illustration of the method, it was thought to be of interest to compare the numerical results obtained from different scattering kernels (transport approximation, linear anisotropy, and exact anisotropy) with a view to assessing the influence of these different approximations on the reactivity, absorption, leakage, generation time, etc. Simultaneously, an examination of two different Monte Carlo sampling techniques is presented. To apply a physical test to the method, some highly enriched uranium spheres, some cylinders of extreme geometry reflected by a variety of materials, and some cylindrical annuli were analyzed and the results compared with experiments. In addition, some systems requiring the full use of the three-dimensional scope of the method are studied. The efficiency of the Monte Carlo procedure is finally illustrated by listing, for several calculations, the probable errors in the reactor eigenvalues and other parameters after 10 min of IBM-7090 computer time. This analysis proves that statistical methods can be used to carry out threedimensional assessments of reactor assemblies with sufficient accuracy without the expenditure of a prohibitive amount of computer time. Such a goal has not yet been achieved by the numerical or analytical methods which solve the neutron transport equation.