ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
H. Rief, H. Kschwendt
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 395-418
Technical Paper | doi.org/10.13182/NSE67-A18401
Articles are hosted by Taylor and Francis Online.
A detailed Monte Carlo analysis in one, two, and three dimensions and with different multigroup scattering kernels is presented for a number of actual reactor systems. Several variance reducing sampling techniques, which we believe to be unusual, are employed and, in addition to the prediction of reactivity, much emphasis is placed on generation time calculations with reference to the “life cycle” point of view. One of the main points of interest in the numerical results obtained is the comparison of the reactivity and time eigenvalues with those obtained from the equivalent SN and jN calculations. The excellent agreement with these two methods establishes the necessary confidence in the Monte Carlo procedure described here. As a further illustration of the method, it was thought to be of interest to compare the numerical results obtained from different scattering kernels (transport approximation, linear anisotropy, and exact anisotropy) with a view to assessing the influence of these different approximations on the reactivity, absorption, leakage, generation time, etc. Simultaneously, an examination of two different Monte Carlo sampling techniques is presented. To apply a physical test to the method, some highly enriched uranium spheres, some cylinders of extreme geometry reflected by a variety of materials, and some cylindrical annuli were analyzed and the results compared with experiments. In addition, some systems requiring the full use of the three-dimensional scope of the method are studied. The efficiency of the Monte Carlo procedure is finally illustrated by listing, for several calculations, the probable errors in the reactor eigenvalues and other parameters after 10 min of IBM-7090 computer time. This analysis proves that statistical methods can be used to carry out threedimensional assessments of reactor assemblies with sufficient accuracy without the expenditure of a prohibitive amount of computer time. Such a goal has not yet been achieved by the numerical or analytical methods which solve the neutron transport equation.