ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. R. Pflasterer, Jr., R. Sher
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 374-394
Technical Paper | doi.org/10.13182/NSE67-A18400
Articles are hosted by Taylor and Francis Online.
The Doppler effect in 238U capture and 235U fission has been measured by means of a foil activation technique in the fast-neutron spectrum core of the Mixed Spectrum Critical Assembly. Experimental results were obtained for two 238U foil thicknesses and one 235U foil thickness. The amount of scattering material between the foil and surrounding core fuel was varied to determine the effect on the Doppler measurement of change in the incident flux fine-energy structure in the resonances. In this experiment, only the foil is heated, while the core fuel remains at room temperature. The experiment is analyzed by means of the collision-probability method which is used to develop an expression for the resonance integral of a thin absorber which is separated from a homogeneous reactor fuel region by a purely scattering medium. The general expression for the foil resonance integral is simplified and numerical results are presented for the case in which the dominant resonances are weak; that is, for a fast reactor in which the 0.5 to 3.0-keV energy region dominates the 238U Doppler effect. The measured 238U Doppler effect expressed as the ratio typically was of the order of 0.015 ±0.002. This was a factor of 2 higher than that calculated using a neutron energy spectrum derived from “nominal” material cross sections. Presently available cross sections in the energy range of interest are sufficiently uncertain so that it is possible to infer from them “hard” or “soft” neutron energy spectra such that the value oi R-l varies by a factor of 2. The measured values for 238U agreed quantitatively with those found from the “soft” neutron energy spectrum. Within the precision of the measurement no 235U Doppler effect was observed. The calculated 235U Doppler effect was smaller than the sensitivity of the experiment, thus, within its precision (± 0.002), the measurement confirms the theory.