ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
G. R. Pflasterer, Jr., R. Sher
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 374-394
Technical Paper | doi.org/10.13182/NSE67-A18400
Articles are hosted by Taylor and Francis Online.
The Doppler effect in 238U capture and 235U fission has been measured by means of a foil activation technique in the fast-neutron spectrum core of the Mixed Spectrum Critical Assembly. Experimental results were obtained for two 238U foil thicknesses and one 235U foil thickness. The amount of scattering material between the foil and surrounding core fuel was varied to determine the effect on the Doppler measurement of change in the incident flux fine-energy structure in the resonances. In this experiment, only the foil is heated, while the core fuel remains at room temperature. The experiment is analyzed by means of the collision-probability method which is used to develop an expression for the resonance integral of a thin absorber which is separated from a homogeneous reactor fuel region by a purely scattering medium. The general expression for the foil resonance integral is simplified and numerical results are presented for the case in which the dominant resonances are weak; that is, for a fast reactor in which the 0.5 to 3.0-keV energy region dominates the 238U Doppler effect. The measured 238U Doppler effect expressed as the ratio typically was of the order of 0.015 ±0.002. This was a factor of 2 higher than that calculated using a neutron energy spectrum derived from “nominal” material cross sections. Presently available cross sections in the energy range of interest are sufficiently uncertain so that it is possible to infer from them “hard” or “soft” neutron energy spectra such that the value oi R-l varies by a factor of 2. The measured values for 238U agreed quantitatively with those found from the “soft” neutron energy spectrum. Within the precision of the measurement no 235U Doppler effect was observed. The calculated 235U Doppler effect was smaller than the sensitivity of the experiment, thus, within its precision (± 0.002), the measurement confirms the theory.