ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
C. H. Reed, C. N. Henry, A. A. Usner
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 362-373
Technical Paper | doi.org/10.13182/NSE67-A18399
Articles are hosted by Taylor and Francis Online.
Asymptotic decay constants for pulse-induced “thermalized” neutron fields have been measured for graphite cubical assemblies having geometric bucklings varying from 9.30 × 10–4 cm–2 to 13.44 × 10–3 cm–2. A value of 700 μ sec was observed to be a sufficient time after the neutron pulse to identify and evaluate fundamental-mode decay in the smallest system included in the above interval of buckling. Values of the infinite-medium neutron lifetime –1 “Fick’slaw” diffusion coefficient D0, as well as the so-called “diffusion-cooling” coefficient C, were obtained from least-squares fits to the experimental α/ρ vs B2/ρ2 data and are mutually consistent and stable over a large interval of B2 and in good agreement with theory. The existence of a well-defined negative FB6 term has been verified. An “effective” higher-mode decay of (3570 ± 80)sec–1, independent of system buckling, was obtained and is consistent with the concept of a continuum lying above a critical limit for fundamental-mode decay. An apparent critical limit (v ∑ t)min has been identified in the interval 2392 sec–1 < (v ∑ t)min < 2648 sec–1 which corresponds to the interval of buckling 13.44 × 10–3 cm–2 to 16.53 × 10–3 cm–2.