ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. E. Maerker, F. J. Muckenthaler
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 340-354
Technical Paper | doi.org/10.13182/NSE67-A18397
Articles are hosted by Taylor and Francis Online.
Monte Carlo calculations, using the albedo concept, have been carried out to determine subcadmium and epicadmium neutron flux distributions along the centerline of a straight, a two-legged, and a three-legged square concrete duct arising from the slowing down of incident epicadmium neutrons for a particularly demanding source geometry and spectrum. The calculations used albedo data differential both in the reflected angles and reflected energy which have been reported previously for concrete. A comparison of the results of these calculations with those from a geometrically similar experiment shows good agreement and places on a firm foundation the concept of treating neutron slowing down in a concrete duct as a reflection phenomenon at a point which is describable by the differential albedo properties of the walls. The conclusion is also reached that the dose rates arising from the subcadmium neutrons (whether due to an epicadmium source or a subcadmium source) and associated secondary wall-capture gamma rays can comprise a very important part of the total absorbed dose rate in tissue deep inside a multilegged duct.