ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
NRC approves subsequent license renewal for Oconee
All three units at the Duke Energy’s Oconee nuclear power plant in South Carolina are now licensed to operate for an additional 20 years.
P. K. Job, M. Srinivasan
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 422-425
Technical Note | doi.org/10.13182/NSE83-A18388
Articles are hosted by Taylor and Francis Online.
It has been shown that the “minimum” achievable spherical critical masses for the three main fissile isotopes of 235U, 239Pu, and 233U at normal temperature and density with BeH2 as moderator and with a thick 9Be reflector is lower than for any other system reported so far. In this context the feasibility of decreasing the critical masses further by exploiting the Bragg cutoff phenomenon in cooled beryllium reflectors was investigated. The reactivity gain obtainable in cooling part (or whole) of the beryllium reflector of a BeH2-moderated homogeneous 233U system to liquid nitrogen temperature (78 K) is explored. Transport theory calculations show that a 50-cm two-zone beryllium reflector with a cooled inner zone of optimum thickness (∼15 cm) at 78 K has an improved albedo and results in a further reduction of 6 to 8% in the critical mass.