ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
A. Natarajan, K. V. Subbaiah, D. V. Gopinath
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 418-422
Technical Note | doi.org/10.13182/NSE83-A18387
Articles are hosted by Taylor and Francis Online.
Significant differences have been observed between Goldstein and Wilkins (moments method) and ASFIT (anisotropic source flux iteration technique) buildup factors in the materials of high atomic number (Z) for 6- and 8-MeV gamma rays at depths greater than 10 mfp. Comparison has been made between the two, and quantitative differences are presented for tin, tungsten, lead, and uranium in the gamma-ray energy range of 3 to 10 MeV up to a depth of 20 mfp. It is believed that these large differences are a sequel to certain deficiencies in the Goldstein and Wilkins method of reconstructing the spatial distribution of the scattered flux in these cases. The closer agreement between the modified moments method values and the present results is cited.