ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
A. Hoeld, O. Lupas
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 396-417
Technical Paper | doi.org/10.13182/NSE83-A18386
Articles are hosted by Taylor and Francis Online.
A three-dimensional real-time nonlinear model is presented describing the transient situation of a pressurized water reactor nuclear power plant as dependent on both external control actions or disturbances and the inherent core dynamics. The plant has been assumed to consist of a three-dimensional core (subdivided into coarse-mesh boxes which, in turn, can be combined into superboxes), a natural circulation U-tube steam generator, and the main steam system (with safety, bypass and control valves, and a steam turbine). It can be disturbed from outside by a movement of control rod banks, an injection or dilution of soluble boric acid, and changes in the main coolant and feedwater mass flow, feedwater temperature, and, due to actions on the turbine control or turbine bypass valve, the secondary outlet steam mass flow. Restrictions were imposed by the requirement that the resulting code (named GARLIC) could be also operated either in parallel (i.e., in real time) or even in a predictive mode to the actual reactor process on a process computer (eventually in connection with a color display). These restrictions have been observed by replacing the diffusion term in the neutron kinetics equations by a combination of time-independent spatial coupling coefficients; calculating these coefficients from a comprehensive basic neutronic model; summing up the basic coarse-mesh elements into superboxes by homogenizing the corresponding local values and rebalancing the coupling coefficients over these superboxes; separating the neutron kinetics and thermodynamics and hydrodynamics part of the model, which could be treated in a pseudostationary way, from the nonlinear xenon-iodine dynamic part, then combining these decoupled parts in a recursive way. Taking advantage of the core symmetry properties, one obtains a nonlinear set of algebraic equations with a sparse power state matrix, which allows a further reduction in needed computer capacity when solving the resulting set of equations.