ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. G. Bankoff, S. H. Han
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 387-395
Technical Paper | doi.org/10.13182/NSE83-A18385
Articles are hosted by Taylor and Francis Online.
A necessary condition for a large-scale steam explosion in a core meltdown accident in the light water reactor is the formation of a coarsely predispersed mixture of molten “fuel” and water. Chapman-Jouguet diagrams for tin-water mixtures indicate that thermal detonations at supercritical pressures are possible only with relatively low initial void fractions (<0.15). The present calculations deal with a one-dimensional array of fuel particles falling steadily from the lower tie plate into the lower plenum pool. Radiative heat fluxes turn out to be several times larger than the convective fluxes. Both homogeneous and separated flow models for the steam-water flow relative to the particles are formulated. In both cases the void fraction rapidly rises to above 0.85, and the particle volume fraction also decreases sharply, indicating rapid bed dispersal. This confirms a simpler calculation by Henry and Fauske of water removal from the heating zone, looked upon as a subcooled critical heat flux calculation. It would therefore appear to be very difficult to have an efficient steam explosion on a scale large enough to threaten the containment.