ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
A. H. Kazi, C. R. Heimbach, R. C. Harrison
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 371-386
Technical Paper | doi.org/10.13182/NSE83-A18384
Articles are hosted by Taylor and Francis Online.
Neutron and gamma-ray tissue kerma and scalar spectrum measurements have been made at the Army Pulse Radiation Division (APRD), Aberdeen Proving Ground, to 1.6 km in air-over-ground geometry from a fission source and are compared to state-of-the-art transport calculations. Measurements have been made by the APRD staff as well as German, Canadian, and French scientists. A variety of integral detectors and differential spectrometers were used. Agreement among the various groups ranges from good to excellent. Calculations have been made in support of shielding programs and in connection with the Hiroshima-Nagasaki dose reevaluation effort. The DOT transport calculations have been performed at the Lawrence Livermore and Oak Ridge National Laboratories, the Defence Research Establishment, Ottawa, and at Science Applications, Inc. Monte Carlo calculations have been performed at Los Alamos National Laboratory. The calculations are generally consistent. Average calculated-to-measured kerma ratios range from 0.83 to 1.27. Calculated-to-measured neutron flux ratios vary from ∼0.6 near 1 keV and ∼0.8 near 5 MeV to ∼1.7 near 0.8 MeV. These spectral differences tend to cancel when determining tissue kerma, raising the possibility that some of the agreement in kerma may be fortuitous. Sources of possible discrepancies are discussed