ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Eishi Ibe, Shunsuke Uchida
Nuclear Science and Engineering | Volume 85 | Number 4 | December 1983 | Pages 339-349
Technical Paper | doi.org/10.13182/NSE83-A18381
Articles are hosted by Taylor and Francis Online.
A computer program package AQUARY has been developed for quantitative evaluation of concentration distributions of the radiolytic species in overall boiling water reactor primary systems. The hydrogen peroxide decomposition rate k, the gas release coefficient ϵ, and the accumulation of products through recirculation of the coolant were taken into consideration. The following relations were found: 1. Hydrogen and hydrogen peroxide concentrations in the core are substantially high, and the following relation holds in the core, 2[O2] = [H2] < [H2O2]. 2. The hydrogen peroxide concentration contributes markedly to the oxygen concentration at the water sampling stations in a plant. In particular, the following equation holds if k > 0.1 s-1, 2[O2] at the sampling station = [H2O2] at the core exit.