ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
A. Dubi, A. Goldfeld, K. Burn
Nuclear Science and Engineering | Volume 91 | Number 4 | December 1985 | Pages 470-480
Technical Note | doi.org/10.13182/NSE85-A18363
Articles are hosted by Taylor and Francis Online.
Recently a detailed theory analyzing the dependence of the second moment and calculational time upon geometrical splitting was developed based on the direct statistical approach (DSA). The extended model refers to the application of the DSA to the case in which splitting and Russian roulette are used depending on the direction in which the particle crosses the surface, but with the limitation that any source particle reaching the detector must have crossed the surface. The results of a first attempt to use the theoretical results for the optimization of the splitting parameter on one surface in a practical problem are reported. The feasibility of the method in predicting a near optimum splitting parameter is demonstrated, and the application of the method to multiple surface problems is discussed.